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Abstract—This paper deals with fractional multi-input, multi-
output systems that guarantees a very small number of pa-
rameters that can reduce the computation time. It focuses in
particular on the state-space representation of systems which
highlights the state variables and allows to study the internal
behavior of the system taking into account the initial state. It
also discusses the discretization of this type of system to finally
adapt the Robust Model Predictive Control to apply it and shows
its efficiency and performance in these systems.

I. INTRODUCTION

The fractional systems proved their efficiency in the
description of certain physical processes [1] [2]. It urged
the researchers to study the behavior and the performances
of the fractional systems [3] [4]. They also adapted several
strategies of control for this type of system. The majority of
the works which treat the fractional systems focus on SISO
systems represented by transfer functions. Nevertheless,
certain systems have several inputs or several outputs, that
explains the necessity of studying the MIMO fractional
systems. And in this case the state-space representation
will be the best choice because it is easier to adapt to the
systems MIMO. The rarity of searches and tools which treat
the fractional MIMO systems represents one inconvenience
of their use. For that reason this article focuses on the
discrétisation and the control of this type of systems.

Model predictive control (MPC) strategy offers an effec-
tive way to tackle the problems in multivariable control
system by including the process model in the computation
of control actions [5]. For processes with strong interaction
between different signals MPC can offer substantial per-
formance improvement compared with traditional single-
input single-output control strategies [6]. MPC has been
used for several decades, and has been accepted as an
important tool in many process industry applications. And
from the control engineering viewpoint, MPC promises a
great benefit to maintain the optimal economic operation
of the plant and preserves the lifetime of the equipment.
One of the main drawbacks of MPC is the difficulty to
incorporate model uncertainties of plant explicitly, and for
this reason, increasing attention has been placed on robust
MPC problems.

This paper focuses on the state representation of MIMO
fractional systems. It extends the discretization of fractional
MIMO systems in the first section. In the second section it
presents the robust predictive control that has been adapted

for this type of systems. Simulation results are discussed in
the third section.

II. DISCRITIZATION OF FRACTIONAL STATE-SPACE MODEL

In the case of non-commensurate fractional systems,
discretization must take into account the plurality of deriva-
tions of state variables, contrary to the commensurate case.

To move from a continuous model to a discrete model it
is necessary to use this approximation [7], [8], [9]:

Dγx(t ) = 1

T γ
s

p∑
j=0

(−1) j
(
γ

j

)
x((k − j )Ts ) (1)

Let’s assume that the vector of continuous model derivation
γ= [

γ1 γ2 · · · γnr
]T , Ts is the sampling time and p ∈N

is the number of samples with which the derivation was
computed.
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By multiplying (1) by T γ
s and developing the terms of

j = 0 and j = 1 the found result is:

T γ
s Dγx(t ) =x(kTs )−γx((k −1)Ts )+

+
p∑

j=2
(−1) j

(
γ

j

)
x((k − j )Ts )

(4)

Let consider the following continuous fractional MIMO
state-space model [10]:{

Dγx(t ) = Ac x(t )+Bc u(t )
y(t ) = Cc x(t )

(5)

With Ac ∈Rnr×nr , Bc ∈Rnr×ni and Cc ∈Rno×nr are the state
matrices of the continuous fractional model and nr is the
number of varibales in state-space model, ni is number of
inputs and no is the number of outputs.

T γ
s Ac x(kTs )−x(kTs ) =−γx((k −1)Ts )+

+
p∑

j=2
(−1) j

(
γ

j

)
x((k − j )Ts )−Bc Ts u(kTs )

(6)
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note that Ir ∈Rnr×nr the identity matrix and T γ
s the diago-

nal matrix filled in by ( T γ1
s · · ·T γnr

s ).
To facilitate writing, let’s note

Z= (T γ
s Ac − Inr )−1 (7)

x(kTs ) =−Zγx((k −1)Ts )+Z
p∑

j=2
(−1) j

(
γ

j

)
x((k − j )Ts )

−ZBc T γ
s u(kTs )

(8)

and with (i = 1, · · · , nr )

c j = di ag {(−1) j
(
γi

j

)
(9)

Now we can write the above equation as:

x(k) =Z c1x(k −1)+ Z
p∑

j=2
c j x(k − j )−ZBc T γ

s u(k) (10)

To simplify the equation:

A j =Z c j (11)

By expanding all terms and simplifying, the new form of
(10)

x(k) = A1x(k−1)+A2x(k−2)+·· ·+Ak x(0)−ZBc T γ
s u(k) (12)

The system can therefore be described by a discrete state-
space representation [11]:{

Xd (k +1) = Ad Xd (k)+Bd u(k)
y(k) =Cd Xd (k)

(13)

With

Xd (k +1) =


x(k +1)

x(k)
...

x(k −p +1)

 , Xd (k) =


x(k)

x(k −1)
...

x(k −p)



Ad =


A1 A2 · · · Ap−1

I 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 · · · I 0

, Bd =


−ZBc T γ

s
0ni

...
0ni


and Cd = (

C 0no · · · 0no
)

with u, y , Xd are respectively the input, output and
variables state of the process. p is the number of past
iterations which the system takes into account for calculat-
ing a variable, 0ni ∈ R1×ni , 0no ∈ Rno×1, Ad ∈ R(nr∗p)×(nr∗p),

Bd ∈R(nr∗p)×ni , Cd ∈Rno×(nr∗p) and Xd ∈R(nr∗p)×1 .

III. ROBUST FRACTIONAL MPC

The principle of the predictive control is to create an an-
ticipatory effect for the system with respecting the trajectory
to follow known in advance, based on the prediction of the
future behavior of the system and minimizing the gap of
these predictions to the trajectory and by minimizing a cer-
tain cost function J , within respecting operating constraints
[12], [13].

In this section we have developed a predictive control
from the discrete fractional state-space model described
in the previous section. For that we will make a variable
change : ∆Xd (k) = Xd (k) − Xd (k − 1) the input variable
difference: ∆u(k) = u(k)−u(k −1), and using it in (13) this
transformation is found:

∆Xd (k +1) = Ad∆Xd (k)+Bd∆u(k) (14)

The new state variable vector is:

X (k) = [∆Xd (k)T y(k)]T

with y(k) is the output and :

y(k +1)− y(k) =Cd Ad∆Xd (k)+Cd Bd∆u(k) (15)

The system can be written in the form:{
X (k +1) = AX (k)+B∆u(k)
y(k) =C X (k)

(16)

A =
(

Ad 0T
d

Cd Ad Ino

)
; B =

(
Bd

Cd Bd

)
;

C = (
0d Ino

)
; 0d ∈Rno×(nr∗p)

Future state variables can be predicted and written in the
form:

X (k +1) = AX (k)+B∆u(k)
X (k +2) = AX (k +1)+B∆u(k +1)

= A2X (k)+ AB∆u(k)+B∆u(k +1)
...

X (k +Hp ) = AHp X (k)+ AHp−1B∆u(k)+
AHp−2B∆u(k +1)+·· ·
+AHp−Hc B∆u(k +Hc −1)

(17)

Based on (17) the future system outputs can be predicted:



y(k +1) = C AX (k)+C B∆u(k)
y(k +2) = C AX (k +1)+C B∆u(k +1)

= C A2X (k)+C AB∆u(k)+
C B∆u(k +1)

...
y(k +Hp ) = C AHp X (k)+C AHp−1B∆u(k)+

C AHp−2B∆u(k +1)+·· ·
+C AHp−Hc B∆u(k +Hc −1)

(18)

Hp and Hc are respectively the prediction horizon and
the control horizon with Hp ≥ Hc . Assume the vector Y
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which contains Hp system’s predicted future outputs and
∆u contains Hc future controls:

Y T = [y(k +1) y(k +2) · · · y(k +Hp )]

∆uT = [∆u(k)∆u(k +1) · · ·∆u(k +Hc −1)]

The vector Y can also be written as :

Y = F X (k)+Φ∆u (19)

F =


C A

C A2

C A3

...
C AHp

 (20)

ΦT =


C B C AB C A2B · · · C AHp−1B

0 C B C AB · · · C AHp−2B
0 0 C B · · · C AHp−3B
...

...
...

. . .
...

0 0 0 C AHp−Hc B

 (21)

The aim of predictive control is to find the control vector
∆u which forces the system’s output y to follow the setpoint
ys . In order to achieve this we must optimize a criterion J
which represents the control objective [14]:

J =
Hp∑
i=1

(ys (k + i )− y(k + i ))2 +λ
Hc−1∑
i=0

∆u2(k + i ) (22)

The criterion J can be written in matrix form:

J = (Ys −Y )T (Ys −Y )+∆uTλ∆u (23)

With Y T
s = [ys (k + 1) ys (k + 2) · · · ys (k + Hp )] is the vector

filled by the future values of the set-points and λ is weight
coefficient on the control.

Let consider in the following, a state-space description
of an uncertain system that can generally be written in the
form [15] [16]:{

Dγx(t ) = Ac (θ)x(t )+Bc (θ)u(t )
y(t ) = Cc (θ)x(t )

(24)

With Ac , Bc and Cc are the state matrices of the continuous
fractional model, the vector of continuous model derivation
γ= [

γ1 γ2 · · · γnr
]T and nr is the number of varibales

in state-space model.

Ac (θ)) = Ac0 +∆Ac (25)

∆Ac =
N∑

i=1
θi Aci (26)

with

θi ∈
[
θi ,θi

]
For this representation, matrices Aci distribute the un-

certainty on the different elements of the matrix Ac (θ).
In RFMPC the control sequence represents the best so-

lution to the worst case. Consequently, the optimal control
law can be obtained by the resolution of the following min-
max problem [17]

mi n
∆u

max
θ

J (∆u,θ) (27)

The min-max problem is resolved in two steps. The first
step consists to calculate the maximum of the performance
criterion J (∆u,θ) compared to the uncertainties parameters
of the set θ . Starting with an initial solution, RFMPC
searches the solution of following function in taking into
account constraints on the parameters model.

J∗(∆u) = max
θ

J (∆u,θ) (28)

The second step concerns the minimization of the criterion
J∗(∆u,θ∗) in taking into account the solution found in Eq.
(28) and the control sequence constraints:

J2 = mi n
∆u

J∗(∆u) (29)

IV. SIMULATION RESULTS

Consider a fractional MIMO system whose state-space
representation is of the form:

Ac =
(

0 1
−a1 −a2

)
,

Bc =
(
1 −1
0 −1

)
, Cc =

(
1.25 0

1 1

)

γ=
(
1.3
0.9

)
with a1 = 1.25 and a2 = 0.625

The step response of system is shown in Fig.1.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

iteration

 

 

Output1

Output2

Fig. 1. The step responnse of system.

Let consider in this section that the system is represented
by the Oustaloup model called M equivalent to the previous
state-space, during the simulation the variables a2 will
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change to 0.425 and 0.825 to find respectively the models
of Oustaloup M1 and M2.

For each simulation the real system will be represented
as follows:

• for 1≤ k ≤ 50 : the system is the model M .
• for 51≤ k ≤ 100 : the system is the model M1.
• for 101≤ k ≤ 160 : the system is the model M2.
The chosen predictive control parameters are: Hp =3,

Hc =1, λ=1. The chosen sampling period for discretization
is: Ts = 0.3s.

To ensure a better control for the system an uncertainty
will be imposed on the values of a1 = 1.25 and a2 = 0.625
with :

a1 ∈ [1,1.5] and a2 ∈ [0.375,0.875]

0 20 40 60 80 100 120 140 160
0

0.5

1

1.5

2

 iteration

 

 

Set−point

Model output

System output

Fig. 2. First output.
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0

0.5

1

1.5

2

 iteration

 

 

Set−point

Model output

System output

Fig. 3. Second output.

Fig.2 and Fig.3 show that RFMPC is able to force the
system to follow the set-point. At each iteration RFMPC
find the worst values of a1 and a2 for the system and then
calculate the best value of control to satisfy the criterion J .
The worst values of ∆a1 and ∆a2 are shown in Fig.4.

Fig.5 and Fig.6 represent the signals of control generated
by RFMPC.

The choosen constraint on the control variables is ∥
∆u(k) ∥≤ 0.2.

Assuming that the control variable ∆u(k) can only in-
creases or decreases in a unit of magnitude less than 0.2
[18], the operational constraint is :

−0.2 ≤ ∆u(k) ≤ 0.2

0 20 40 60 80 100 120 140 160

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 iteration

 

 

∆ a2

∆ a1

Fig. 4. The worst values of ∆a1 and ∆a2 in each iteration.
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Fig. 5. First control .
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Fig. 6. Second control.
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Fig. 7. Increment of first control.

Even under constraint the RFMPC can ensure that the
outputs follow the set-point. Constrains on the control
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Fig. 8. Increment of second control.

increment represented in Fig.7 and Fig.8 guarantees that
there is no peaks in the control signal. In return, the outputs
porsuite becomes slower as shown in the Fig.2 and Fig.3.
The choice of the the interval ∆u is very important, because
if the interval is too wide the condition will not be taken
into account when minimizing criterion J, and if the interval
is too small the control will no longer be able to bring the
outputs to follow the set-point, even if it happen the system
will be too slow.

V. CONCLUSION

The use of fractional models becomes more and more
frequent given the efficiency they provide in the discription
of certain physical systems. Nevertheless they remain a little
difficult to handle. The majority of research [19], [20], [21]
deals with SISO fractional models that have proved effective
at describing several physical phenomena. This article has
adapted predictive control to apply it to a MIMO fractional
system. The importance of this work is that it deals with the
state-space representation of MIMO fractional systems from
discritization to control. It first introduced the dicritization
of fractional MIMO state-space representation. Then for
the same kind of system, it adapted the robust predictive
control and applied it.
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